
So�ware Development (cs2500)

Lecture 15: Writing Methods

M.R.C. van Dongen

November 5, 2010

Contents
1 Introduction 1

2 Methods 2
2.1 Kinds of Methods . 2

2.2 Side E�ects . 2

2.3 Managing Computations . 3

2.4 Entry and Exit Points . 4

2.5 Aim for Simplicity . 5

2.6 Developing Methods . 5

3 Case Study 6
3.1 Requirements . 6

3.2 High-Level Design . 7

3.3 Re�ning Pseudo Code . 8

3.4 Re�ection . 10

4 For Monday 10

1 Introduction
�ese notes study two things. �e �rst topic is good practice of method writing. �e second topic is

designing methods. By the end of these notes you should know how to write methods and develop

algorithms using methods.

1

2 Methods
�is section studies methods and method development. It start by recalling the di�erence between void
methods, which don’t return a value, and non-void methods, which do return a value. It continues by

studying side e�ects of methods, managing computations with methods, writing methods, and designing

methods.

2.1 Kinds of Methods
�ere are two kinds of methods:

void methods: �ese methods don’t have a return statement, don’t return values, and have the void
“return type”. �e main purpose of these methods is to manage other computations.

Non-void methods: �ese methods do have a return statement, which they use to explicitly return a

value. Usually, this is the only purpose.

2.2 Side E�ects
In reality, the distinction between methods that “return” and don’t “return” values is not always so clear.

�e reason for this is that methods may have side e�ects which change the state of the computation. For

example:

• A class method may have access to class variables and it may change the value of such variables

during a method call. �e following is an example. �e method println is a void method. As such

it does not explicitly return a value. However, the value of the class attribute printlnCalls1
is

incremented as a result of each call.

public class MySystem {
private static int printlnCalls;

public static void println(String str) {
printlnCalls ++;
System.out.println(str);

}

public static int getPrintlnCalls() {
return printlnCalls;

}
}

Java

• An instance method may have access to both class and instance variables. �ese methods may

change the value of any such variable as a result of a method call.

1
Why is this a class attribute?

2

• Even if you can’t “see” state a�ecting changes as explicit assignments inside a method, this does not

mean they are not there. For example, side e�ects may occur as the result of submethod calls inside

the method.

2.3 Managing Computations
�e main purpose of a method is to organise and manage its computation. �e statements in the body of

the method should have a natural order: �rst do this, then that, and so on. Each sub-computation should

be well-de�ned. �is includes the input, output, and purpose of the computation.

�e purpose of previous sub-computations it to prepare the explicit/implicit input for subsequent

sub-computations.

You should always aim for the maximum possible clarity in your computations. For example, your

code is clearer if you don’t use the return statement in void methods, and only have one return statement

in non-void methods.

Arguably, the following is not clear because there are several exit points from the method. In general

this makes it di�cult to reason about the method. As we shall see in a few moments, the return statement

in the middle of the method is not needed and omitting it simpli�es the method.

public static void print(boolean condition, String str) {
if (!condition) {

return;
}
System.out.println(str);

}

Don’t Try this at Home

�e following method is equivalent, but much clearer.

public static void print(boolean condition, String str) {
if (condition) {

System.out.println(str);
}

}

Java

�e following method de�nition has two return statements. (Still this de�nition is crisp-and-clear.)

public static int fib(int n) {
if (n <= 1) {

return 1;
} else {

return fib(n - 1) + fib(n - 2);
}

}

Java

3

�e following method de�nition is equivalent to the previous de�nition. However, this de�nition

uses only one return statement.

public static int fib(int n) {
final int result;

if (n <= 1) {
result = 1;

} else {
result = fib(n - 1) + fib(n - 2);

}

return result;
}

Java

2.4 Entry and Exit Points
�e previous subsection stated that it is good practice to have one return statement in a method. �is is

a consequence of the following general rule:

Each computation should have (exactly) one entry point and one exit point.

�is rule can be enforced by avoiding the break statement.
2

�e following is an example of poor pro-

gramming style.

while (condition1) {
if (condition2) {

break;
} else {
〈stuff〉

}
}

Don’t Try this at Home

�e following shows how to avoid this poor programming style. �e result is much cleaner code,

which is easier to understand and maintain.

while ((condition1) && (!condition2)) {
〈stuff〉

}

Java

For the remainder of this course you are not allowed to use the break statement to break out of loops.

2
Except for breaks in switch statement.

4

2.5 Aim for Simplicity
Some programmers are always on the lookout for opportunities to combine sub-computations. Usually,

this increases the complexity of their algorithms, making it more di�cult to reason about the code. What

is worse, the code becomes more di�cult to maintain. In general, you should aim at simplicity. By

adopting this rule, the quality of your methods will improve. In addition it makes your methods easier to

write and maintain.

2.6 Developing Methods
Method de�nitions should be short and concise. Sub-computations in method de�nitions may be written

using short, simple statements provided these statements don’t require too many lines. No method should

be longer than approximately 40 lines. If a method requires too many lines, then implement it as a series

of submethod calls. Likewise, if a sub-computation is “long” then you should consider writing it as a

submethod call.
3

Implementing the sub-computation as a method call simpli�es the overall computation.

For example, you can see exactly what goes into the sub-computation and comes out of it. �is streamlines

your code and makes it easier to maintain.

Your methods should be well-de�ned: input, output, and task. It is impossible to develop a complex

algorithm without trial and error. Despite this observations, it is still possible to stay in control of the

design process if you develop your methods in a top-down fashion. With a top-down design you:

• Start with a coarse version of the algorithm.

• You implement the algorithm as a method.

• Initially, you implement the basic steps in pseudo-code.

• When you’re happy with the design of the method you substitute method calls and basic Java for

the pseudo-code.

• You recursively re�ne your methods until you end up with “basic” Java.

�e following spells out the top-down design process in more detail.

• If the task requires a few simple statements:

– Write it down using simple statements.

• If the task requires many statements or is not easy to formulate:

– �ink of a sequence of sub-computations that carry out the overall computation.

– Initially you state sub-computations using pseudo-code. Here pseudo-code is a mixture of

English, mathematics, and Java.

– Each pseudo-code statement should be well de�ned.

3
Here the computation is long if it is di�cult to tell the subcomputation’s input and output.

5

– �is includes the main task, input, and output.

– Easy pseudo-computations can be implemented “directly”:

∗ Either you use existing methods/classes/libraries.

∗ Or you write simple statements without method calls.

Possible candidates for easy tasks are the computations that are already expressed in Java.

– Complicated pseudo-computations should be implemented using calls to new submethods.

– By developing the new submethods in a similar way you can write your entire method.

3 Case Study
In this section we shall carry out a case study in method and class writing. In particular we shall implement

a program that plays “guessing games”.

3.1 Requirements
�e following are the requirements of our guessing game.

• �ere are two contestants: John and Paul.

• John and Paul compete until there’s a winner of the match.

• �e program announces the winner and the �nal score.

• �e match is won by the �rst player who wins 3 sets. Initially, each player starts with 0 sets won.

• �e rules for playing a set are as follows:

– Each player starts with 0 games won.

– �e players play a sequence of games.

– �e �rst player who wins 6 games wins the set.

• �e rules for playing a game are as follows:

– Each game has its own referee.

– �e game consists of a sequence of rounds.

– �e game is won by the �rst player that wins a round without ties.

– Each round the referee and players guess a random boolean.

– A tie occurs if both players guess the same boolean.

– Otherwise, the winner is the player that guesses the same boolean as the referee.

6

3.2 High-Level Design
In the following we start by assuming that we only need a Contestant class. (�is is reasonable since the

contestants appear to be the actors. Furthermore, we can always add classes as needed.)

�e following is a possible high-level speci�cation.

Contestant john = new Contestant("John");
Contestant paul = new Contestant("Paul");

// Determine winner and loser of match.

// Announce winner and score.

Pseudo Code

It seems natural to introduce a method playMatch() that plays a match and returns the winner.

�e implementation of “Announce winner and score” seems trivial. Of course this depends on how we

implement Contestant and playMatch().

�ere are two obvious options for a signature for playMatch:

• �e �rst option is ‘Contestant playMatch(Contestant player1, Contestant player2)’.

�is method plays the match using player1 and player2. Since it does not depend on other Con-
testants it is best implemented as a class method: static Contestant playMatch(Contestant
player1, Contestant player2).

• �e second option is ‘Contestant playMatch(Contestant that)’. Here the idea is that this

method plays the match between this and that. �is method depends on the implicit variable

this, which corresponds to the “current” object: the object that called the method as an instance

method. �erefore, this method has to be implemented as an instance method.

Let’s opt for the second choice.

// Play match between this and that and return winner.
public Contestant playMatch(Contestant that) {

boolean matchOver = false;
// Initialise numbers of sets won.
while (!matchOver) {

// Determine setWinner: the winner of the next set.
// Increase the number of sets won of setWinner.
// Set matchOver to true if setWinner has won the match.

}
return (this.winsMatch() ? this : that);

}

Pseudo Code

7

3.3 Re�ning the High-Level Pseudo Code
Our high-level pseudo-code formulation has the following tasks:

• Initialise numbers of sets won.

• Determine setWinner: the winner of the next set.

• Increase the number of sets won of setWinner.

• Set matchOver to true if setWinner has won the match.

It seems natural to introduce an instance variable int setsWon that records the number of sets won. It

also looks the we’re going to need a method which determines whether a given Contestant has won the

match.

• Instance attribute: int setsWon. �is attribute counts the number of sets won by this Contestant.

• Instance method: boolean winsMatch(). �is method returns true if and only if this Contes-
tant has won the match.

Given our choice for setsWon and winsMatch() we should be able to �nd an implementation

according to the following lines.

public class Contestant {
/**
* Number of sets a {@code Contestant} needs to win
* in order to win match.
*/

private static int SETS_REQUIRED_FOR_MATCH = 3;
/**
* Number of times {@code Contestant} has won a set.
*/

private int setsWon;

/**
* Determine if {@code Contestant} has won the match.
*
* @return {@code true} iff {@code this Contestant} has won the match.
*/

public boolean winsMatch() {
return setsWon == SETS_REQUIRED_FOR_MATCH;

}
}

Java

Notice that the choice for the visibility modi�ers private and public is automatic:

8

• Instance and class variables should be encapsulated so they should be private.

• For the design to work it should be possible to call the method winsMatch() outside the Contes-
tant class. �erefore, the method should be public.

Implementing the getter and setter method for the attribute setsWon is le� as an exercise for the reader.

It is also clear that contestants have a name. It seems reasonable to introduce an instance attribute

name that represents the name and a constructor that initialises the name. While we’re at it, we might as

well override toString.

/**
* Name of contestant.
*/

private final String name;

/**
* Main constructor.
*
* @param name The name of the {@code contestant}.
*/

public Contestant(String name) {
this.name = name;

}

@Override
public String toString() {

return name;
}

Java

Let’s see how far we’ve got. We were in the process of implementing the following:

• Initialise numbers of sets won.

– �is pseudo-code statement may be implemented by using the setter for the instance variable

setsWon: this.setSetsWon(0) and that.setSetsWon(0).

• Determine setWinner: the winner of the next set.

– Playing a set and and a match is similar, so let’s implement this pseudo-code statement along

the same lines as our implementation of playMatch. For the moment we use a stub for

this sub-computation: an instance method Contestant playSet(Contestant that).

�e sole task of the method is to determine (return) the winner of the next set between

this and that. Using the new method we can implement the pseudo code statement as

‘Contestant setWinner = playSet(that)’. For the moment we won’t bother about the

exact implementation of playSet(). We know that stepwise re�nement should allow us to

complete the implementation of the method it later on.

9

• Increase the number of sets won of setWinner.

– �is pseudo-code statement may be implemented using the setter and getter of the method

setsWon. For example, ‘setWinner.setSetsWon(setWinner.getSetsWon() + 1)’ does

the trick.

• Set matchOver to true if setWinner has won the match.

– �is pseudo-code statement may be implemented as follows: matchOver = setWinner.winsMatch(
).

We’ve made great progress. All that remains doing is implement the method playSet and we’re done.

3.4 A Moment of Re�ection
How far have we got? We started with a pseudo-code implementation of the method playMatch().

Using stepwise re�nement we managed to substitute real Java for the pseudo-code. �e result of this

actually looks and feels as real Java:

public Contestant playMatch(Contestant that) {
boolean matchOver = false;
this.setSetsWon(0);
that.setSetsWon(0);

while (!matchOver) {
Contestant setWinner = playSet(that);
setWinner.setSetsWon(setWinner.getSetsWon() + 1);
System.out.println("Set won by " + setWinner);
matchOver = setWinner.winsMatch();

}

return (this.winsMatch() ? this : that);
}

Java

If we try to compile this, then the compiler will tell us that there’s only one thing that’s missing: the

method playSet(). �is method can be developed in a similar way as we implemented the method

playMatch().

4 For Monday
Study the notes and complete the design of the guessing game.

10

	Introduction
	Methods
	Kinds of Methods
	Side Effects
	Managing Computations
	Entry and Exit Points
	Aim for Simplicity
	Developing Methods

	Case Study
	Requirements
	High-Level Design
	Refining Pseudo Code
	Reflection

	For Monday

